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Recall Linear Programming

• Maximize (or minimize) an objective function with respect to constraints
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Linear Programming
General Formulation

Maximize cj
j 1=

n

∑ xj

subject to: aij
j 1=

n

∑ xj bi≤  for i 1 2 … m, , ,=

 xj 0≥  for j 1 2 … n, , ,=

objective function

constraints



Linear Programming Formulation
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Linear Programming

Maximize Z c1x1 c2x2 … cnxn+ + +=

Subject to:

a11x1 a12x2 … a1nxn+ + + b1≤

a21x1 a22x2 … a2nxn+ + + b2≤

...

am1x1 am2x2 … amnxn+ + + bm≤  

and x1 0 x2 0 … xn 0≥, ,≥,≥

xj

cj

bi

aij

Decision variable  
- we would like to  
  determine (decide) this

The unit value for the  
jth decision variable

LP as a “Decision Making” Problem:

The available amount  
for the ith resource

The unit of ith resource  
required for one unit of  
the jth decision variable

Given 
by the 

problem 
instance

Value maximization subject  
to resource constraints



Linear Programming Formulation

• Feasible Solution: A set of values for the decision variables (x1, …, xn) that 
satisfies all of the constraints. 


• Optimal Solution: A feasible solution that gives the best value (                ) 
among all feasible solutions.

Xn

j=1
cixi
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Linear Programming

Maximize Z c1x1 c2x2 … cnxn+ + +=
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Linear Programming Formulation

• The problem can be cast either as a maximization or a minimization problem. 
(Just multiply all the “value” constants ci by -1. )
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Linear Programming

Maximize Z c1x1 c2x2 … cnxn+ + +=

Subject to:

a11x1 a12x2 … a1nxn+ + + b1≤

a21x1 a22x2 … a2nxn+ + + b2≤

...

am1x1 am2x2 … amnxn+ + + bm≤  

and x1 0 x2 0 … xn 0≥, ,≥,≥

Linear Programming Formulation

• The problem can be cast either as a maximization or a minimization problem. 
(Just multiply all the “value” constants ci by -1. )


• In the new problem, ci can be interpreted as cost.

Minimize

xj

cj

bi

aij

Decision variable 

The unit cost for the  
jth decision variable

The available amount 
for the ith resource

The unit of ith resource  
required for one unit of  
the jth decision variable

Given 
by the 

problem 
instance

Cost minimization subject  
to resource constraints



LP Example: Maximizing Capacity with 
Constrained Crew and Vehicle Supply

• Freight needs to be carried with trucks. 


• Two types of trucks are available in limited numbers,  
each with different capacity and crew requirements: 


• We have a limited amount of crew: Exactly 180 number of personnel 
available. All personnel can operate either truck. 


• How many trucks of each type would you utilize? 

Capacity Crew required Number available
Anadol 300 3 40

BMC 500 2 60



Some Important Linear Programming Problems

• Transportation problem


• Assignment problem


• Maximum flow problem on a network


• Minimum-cost flow problem on a network



The Transportation Problem

• Need to ship goods peas from 
canneries to warehouses. 


• How can you formulate a linear 
program for this shipment problem?
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CANNERY 1
Bellingham

CANNERY 2
Eugene CANNERY 3

Albert Lea 

WAREHOUSE 4
Albuquerque

WAREHOUSE 3
Rapid City

WAREHOUSE 2
Salt Lake City

WAREHOUSE 1
Sacramento

FIGURE 8.1
Location of canneries and warehouses for the P & T Co. problem.

TABLE 8.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload

Warehouse

1 2 3 4 Output

1 464 513 654 867 75
Cannery 2 352 416 690 791 125

3 995 682 388 685 100

Allocation 80 65 70 85
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The Transportation Problem

• Consider the network formulation:

subject to the constraints

x11 ! x12 ! x13 ! x14 ! x21 ! x21 ! x21 ! x21 ! x21 ! x21 ! x21 ! x21 " 75
! x21 ! x21 ! x21 ! x21x21 ! x22 ! x23 ! x24 ! x21 ! x21 ! x21 ! x21 " 125
! x21 ! x21 ! x21 ! x21 ! x21 ! x21 ! x21 ! x21x31 ! x32 ! x33 ! x34 " 100

x11 ! x21 ! x21 ! x21 ! x21 ! x21 ! x21 ! x21 ! x31 ! x21 ! x21 ! x21 " 80
x11 ! x12 ! x21 ! x21 ! x21 ! x22 ! x21 ! x21 !x21 ! x32 ! x21 ! x21 " 65
x11 ! x12 ! x13 ! x21 ! x21 ! x21 ! x23 ! x21 ! x21 ! x21 ! x33 ! x21 " 70
x11 ! x12 ! x13 ! x14 ! x21 ! x21 ! x21 ! x24 ! x21 ! x21 ! x21 ! x34 " 85

and

xij # 0 (i " 1, 2, 3; j " 1, 2, 3, 4).

Table 8.3 shows the constraint coefficients. As you will see later in this section, it is the
special structure in the pattern of these coefficients that distinguishes this problem as a
transportation problem, not its context.
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FIGURE 8.2
Network representation of
the P & T Co. problem.
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TABLE 8.3 Constraint coefficients for P & T Co.

Coefficient of:

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

1 1 1 1 Cannery1 1 1 1 constraints1 1 1 1

A " 1 1 1
1 1 1 Warehouse

1 1 1 constraints
1 1 1



The Transportation Problem

• Define the decision variables:   
     xij is the amount shipped from cannery i to warehouse j, 
     where i = 1, 2, 3 and j = 1, 2, 3, 4.


• Formulate the objective function: 


• Formulate the constraints: 

method for efficiently solving transportation problems. (You will see in Sec. 9.7 that this
algorithm is related to the network simplex method, another streamlined version of the sim-
plex method for efficiently solving any minimum cost flow problem, including both trans-
portation and assignment problems.) Section 8.3 then focuses on the assignment problem.
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Prototype Example

One of the main products of the P & T COMPANY is canned peas. The peas are prepared
at three canneries (near Bellingham, Washington; Eugene, Oregon; and Albert Lea, Min-
nesota) and then shipped by truck to four distributing warehouses in the western United
States (Sacramento, California; Salt Lake City, Utah; Rapid City, South Dakota; and Al-
buquerque, New Mexico), as shown in Fig. 8.1. Because the shipping costs are a major
expense, management is initiating a study to reduce them as much as possible. For the
upcoming season, an estimate has been made of the output from each cannery, and each
warehouse has been allocated a certain amount from the total supply of peas. This infor-
mation (in units of truckloads), along with the shipping cost per truckload for each can-
nery-warehouse combination, is given in Table 8.2. Thus, there are a total of 300 truck-
loads to be shipped. The problem now is to determine which plan for assigning these
shipments to the various cannery-warehouse combinations would minimize the total ship-
ping cost.

By ignoring the geographical layout of the canneries and warehouses, we can provide
a network representation of this problem in a simple way by lining up all the canneries in
one column on the left and all the warehouses in one column on the right. This represen-
tation is shown in Fig. 8.2. The arrows show the possible routes for the truckloads, where
the number next to each arrow is the shipping cost per truckload for that route. A square
bracket next to each location gives the number of truckloads to be shipped out of that lo-
cation (so that the allocation into each warehouse is given as a negative number).

The problem depicted in Fig. 8.2 is actually a linear programming problem of the
transportation problem type. To formulate the model, let Z denote total shipping cost, and
let xij (i ! 1, 2, 3; j ! 1, 2, 3, 4) be the number of truckloads to be shipped from cannery
i to warehouse j. Thus, the objective is to choose the values of these 12 decision variables
(the xij) so as to

Minimize Z ! 464x11 " 513x12 " 654x13 " 867x14 " 352x21 " 416x22

" 690x23 " 791x24 " 995x31 " 682x32 " 388x33 " 685x34,
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TABLE 8.1 Table of
constraint coefficients
for linear
programming

A !

⎤
⎥
⎥
⎥
⎦

a1n

a2n

amn

…
…

…

a12

a22

am2

a11

a21

am1

⎡
⎢
⎢
⎢
⎣
………………………
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The General Transportation Problem

• Several similar problems are in fact “source-to-destination transportation 
problem.”

However, before examining the special structure of the transportation problem model,
let us pause to look at an actual application that resembles the P&T Co. problem but on
a vastly larger scale.

An Award Winning Application of a Transportation Problem

Except for its small size, the P & T Co. problem is typical of the problems faced by many
corporations which must ship goods from their manufacturing plants to their customers.

For example, consider an award winning OR study conducted at Proctor & Gamble
(as described in the January–February 1997 issue of Interfaces). Prior to the study, the
company’s supply chain consisted of hundreds of suppliers, over 50 product categories,
over 60 plants, 15 distribution centers, and over 1,000 customer zones. However, as the
company moved toward global brands, management realized that it needed to consolidate
plants to reduce manufacturing expenses, improve speed to market, and reduce capital in-
vestment. Therefore, the study focused on redesigning the company’s production and dis-
tribution system for its North American operations. The result was a reduction in the num-
ber of North American plants by almost 20 percent, saving over $200 million in pretax
costs per year.

A major part of the study revolved around formulating and solving transportation
problems for individual product categories. For each option regarding the plants to keep
open, etc., solving the corresponding transportation problem for a product category shows
what the distribution cost would be for shipping the product category from those plants
to the distribution centers and customer zones. Numerous such transportation problems
were solved in the process of identifying the best new production and distribution system.

The Transportation Problem Model

To describe the general model for the transportation problem, we need to use terms that
are considerably less specific than those for the components of the prototype example. In
particular, the general transportation problem is concerned (literally or figuratively) with
distributing any commodity from any group of supply centers, called sources, to any group
of receiving centers, called destinations, in such a way as to minimize the total distribu-
tion cost. The correspondence in terminology between the prototype example and the gen-
eral problem is summarized in Table 8.4.

As indicated by the fourth and fifth rows of the table, each source has a certain sup-
ply of units to distribute to the destinations, and each destination has a certain demand
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TABLE 8.4 Terminology for the transportation problem

Prototype Example General Problem

Truckloads of canned peas Units of a commodity
Three canneries m sources
Four warehouses n destinations
Output from cannery i Supply si from source i
Allocation to warehouse j Demand dj at destination j
Shipping cost per truckload from cannery i to Cost cij per unit distributed from source i to
warehouse j destination j



The General Transportation Problem

• The general transportation problem is formulated as a linear program as follows:

Therefore, formulating a problem as a transportation problem only requires filling out
a parameter table in the format of Table 8.5. Alternatively, the same information can be
provided by using the network representation of the problem shown in Fig. 8.3. It is not
necessary to write out a formal mathematical model.

However, we will go ahead and show you this model once for the general trans-
portation problem just to emphasize that it is indeed a special type of linear programming
problem.

Letting Z be the total distribution cost and xij (i ! 1, 2, . . . , m; j ! 1, 2, . . . , n) be
the number of units to be distributed from source i to destination j, the linear program-
ming formulation of this problem is

Minimize Z ! !
m

i!1
!
n

j!1
cijxij,

subject to

!
n

j!1
xij ! si for i ! 1, 2, . . . , m,

!
m

i!1
xij ! dj for j ! 1, 2, . . . , n,

and

xij " 0, for all i and j.

Note that the resulting table of constraint coefficients has the special structure shown in
Table 8.6. Any linear programming problem that fits this special formulation is of the
transportation problem type, regardless of its physical context. In fact, there have been
numerous applications unrelated to transportation that have been fitted to this special struc-
ture, as we shall illustrate in the next example later in this section. (The assignment prob-
lem described in Sec. 8.3 is an additional example.) This is one of the reasons why the
transportation problem is considered such an important special type of linear program-
ming problem.
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TABLE 8.5 Parameter table for the transportation problem

Cost per Unit Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n s1

2 c21 c22
… c2n s2Source

! !

m cm1 cm2
… cmn sm

Demand d1 d2
… dn

…………………………………………………………………
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The General Transportation Problem

• The same transportation problem can be considered 
as a network flow problem as follows: 

For many applications, the supply and demand quantities in the model (the si and di)
have integer values, and implementation will require that the distribution quantities (the
xij) also have integer values. Fortunately, because of the special structure shown in Table
8.6, all such problems have the following property.

Integer solutions property: For transportation problems where every si and dj

have an integer value, all the basic variables (allocations) in every basic feasible
(BF) solution (including an optimal one) also have integer values.

The solution procedure described in Sec. 8.2 deals only with BF solutions, so it auto-
matically will obtain an integer optimal solution for this case. (You will be able to see why
this solution procedure actually gives a proof of the integer solutions property after you
learn the procedure; Prob. 8.2-22 guides you through the reasoning involved.) Therefore,
it is unnecessary to add a constraint to the model that the xij must have integer values.

As with other linear programming problems, the usual software options (Excel,
LINGO/LINDO, MPL/CPLEX) are available to you for setting up and solving trans-
portation problems (and assignment problems), as demonstrated in the files for this chap-
ter in your OR Courseware. However, because the Excel approach now is somewhat dif-
ferent from what you have seen previously, we next describe this approach.
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FIGURE 8.3
Network representation of
the transportation problem.



The General Transportation Problem

• In Excel the transportation problem can be written down as follows: 

portation problems very efficiently, such as the transportation simplex method presented
in the next section. Therefore, a software package that includes such a streamlined ver-
sion should solve a large transportation problem much faster than the Excel Solver.

We mentioned earlier that some problems do not quite fit the model for a transportation
problem because they violate the requirements assumption, but that it is possible to re-
formulate such a problem to fit this model by introducing a dummy destination or a dummy
source. When using the Excel Solver, it is not necessary to do this reformulation since the
simplex method can solve the original model where the supply constraints are in ! form
or the demand constraints are in " form. However, the larger the problem, the more worth-
while it becomes to do the reformulation and use the transportation simplex method (or
equivalent) instead with another software package.

The next two examples illustrate how to do this kind of reformulation.

An Example with a Dummy Destination

The NORTHERN AIRPLANE COMPANY builds commercial airplanes for various air-
line companies around the world. The last stage in the production process is to produce
the jet engines and then to install them (a very fast operation) in the completed airplane
frame. The company has been working under some contracts to deliver a considerable
number of airplanes in the near future, and the production of the jet engines for these
planes must now be scheduled for the next 4 months.
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FIGURE 8.4
A spreadsheet formulation of
the P & T Co. problem as a
transportation problem,
where rows 3 to 9 show the
parameter table and rows 12
to 18 display the solution
table after using the Excel
Solver to obtain an optimal
shipping plan. Both the
formulas for the output cells
and the specifications
needed to set up the Solver
are given at the bottom.



Another Transportation Problem in Excel

• Consider a special case, where we assign products to plants for production:

ucts, except that Plant 2 cannot produce product 3. However, the variable costs per unit
of each product differ from plant to plant, as shown in the main body of Table 8.27.

Management now needs to make a decision on how to split up the production of the
products among plants. Two kinds of options are available.

Option 1: Permit product splitting, where the same product is produced in more than one
plant.

Option 2: Prohibit product splitting.

This second option imposes a constraint that can only increase the cost of an optimal so-
lution based on Table 8.27. On the other hand, the key advantage of Option 2 is that it
eliminates some hidden costs associated with product splitting that are not reflected in
Table 8.27, including extra setup, distribution, and administration costs. Therefore, man-
agement wants both options analyzed before a final decision is made. For Option 2, man-
agement further specifies that every plant should be assigned at least one of the products.

We will formulate and solve the model for each option in turn, where Option 1 leads
to a transportation problem and Option 2 leads to an assignment problem.

Formulation of Option 1. With product splitting permitted, Table 8.27 can be con-
verted directly to a parameter table for a transportation problem. The plants become the
sources, and the products become the destinations (or vice versa), so the supplies are
the available production capacities and the demands are the required production rates.
Only two changes need to be made in Table 8.27. First, because Plant 2 cannot produce
product 3, such an allocation is prevented by assigning to it a huge unit cost of M. Sec-
ond, the total capacity (75 ! 75 ! 45 " 195) exceeds the total required production 
(20 ! 30 ! 30 ! 40 " 120), so a dummy destination with a demand of 75 is needed to
balance these two quantities. The resulting parameter table is shown in Table 8.28.

The optimal solution for this transportation problem has basic variables (allocations)
x12 " 30, x13 " 30, x15 " 15, x24 " 15, x25 " 60, x31 " 20, and x34 " 25, so

Plant 1 produces all of products 2 and 3.
Plant 2 produces 37.5 percent of product 4.
Plant 3 produces 62.5 percent of product 4 and all of product 1.

The total cost is Z " $3,260 per day.

Formulation of Option 2. Without product splitting, each product must be assigned
to just one plant. Therefore, producing the products can be interpreted as the tasks for an
assignment problem, where the plants are the assignees.
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TABLE 8.27 Data for the Better Products Co. problem

Unit Cost ($) for Product
Capacity

1 2 3 4 Available

1 41 27 28 24 75
Plant 2 40 29 — 23 75

3 37 30 27 21 45

Production rate 20 30 30 40



Another Transportation Problem in Excel

• Consider a special case, where we assign products to plants for production:390 8 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

FIGURE 8.6
A spreadsheet formulation of
Option 2 for the Better
Products Co. problem as a
variant of an assignment
problem, where rows 12 to
18 show the cost table and
the changing cells (D24:G26)
display the optimal
production plan obtained by
the Solver.
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The Assignment Problem

• Goal: Match assignees to tasks, so that:


• The number of assignees and the number of tasks are 
the same. (This number is denoted by n.) 


• Each assignee is to be assigned to exactly one task. 


• Each task is to be performed by exactly one assignee. 


• There is a cost cij associated with assignee i (i =︎ 1, 
2, . . . , n) performing task j (j =︎ 1, 2, . . . , n). 


• The objective is to determine how all n assignments 
should be made to minimize the total cost.  

The Assignment Problem Model and Solution Procedures

The mathematical model for the assignment problem uses the following decision variables:

xij ! !
for i ! 1, 2, . . . , n and j ! 1, 2, . . . , n. Thus, each xij is a binary variable (it has value
0 or 1). As discussed at length in the chapter on integer programming (Chap. 12), binary
variables are important in OR for representing yes/no decisions. In this case, the yes/no
decision is: Should assignee i perform task j?

By letting Z denote the total cost, the assignment problem model is

Minimize Z ! "
n

i!1
"
n

j!1
cijxij,

subject to

"
n

j!1
xij ! 1 for i ! 1, 2, . . . , n,

"
n

i!1
xij ! 1 for j ! 1, 2, . . . , n,

and

xij " 0, for all i and j
(xij binary, for all i and j).

The first set of functional constraints specifies that each assignee is to perform exactly one
task, whereas the second set requires each task to be performed by exactly one assignee.
If we delete the parenthetical restriction that the xij be binary, the model clearly is a spe-
cial type of linear programming problem and so can be readily solved. Fortunately, for rea-
sons about to unfold, we can delete this restriction. (This deletion is the reason that the as-
signment problem appears in this chapter rather than in the integer programming chapter.)

Now compare this model (without the binary restriction) with the transportation prob-
lem model presented in the third subsection of Sec. 8.1 (including Table 8.6). Note how

if assignee i performs task j,
if not,

1
0
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TABLE 8.25 Cost table for the Job Shop Co. 
assignment problem

Task
(Location)

1 2 3 4

1 13 16 12 11
Assignee 2 15 M 13 20
(Machine) 3 5 7 10 6

4(D) 0 0 0 0



The Assignment Problem

• The assignment problem can be formulated as an integer program as follows:


• Define the decision variables:


• Write down the objective function 
and the constraints:
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TABLE 8.25 Cost table for the Job Shop Co. 
assignment problem

Task
(Location)
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Assignee 2 15 M 13 20
(Machine) 3 5 7 10 6
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square bracket indicates the number of assignees being provided at that location in the
network, so the values are automatically 1 on the left, whereas the values of !1 on the
right indicate that each task is using up one assignee.

For any particular assignment problem, practitioners normally do not bother writing
out the full mathematical model. It is simpler to formulate the problem by filling out a
cost table (e.g., Table 8.25), including identifying the assignees and tasks, since this table
contains all the essential data in a far more compact form.

Alternative solution procedures are available for solving assignment problems. Prob-
lems that aren’t much larger than the Job Shop Co. example can be solved very quickly
by the general simplex method, so it may be convenient to simply use a basic software
package (such as Excel and its Solver) that only employs this method. If this were done
for the Job Shop Co. problem, it would not have been necessary to add the dummy ma-
chine to Table 8.25 to make it fit the assignment problem model. The constraints on the
number of machines assigned to each location would be expressed instead as

!
3

i"1
xij # 1 for j " 1, 2, 3, 4.

As shown in the Excel file for this chapter, a spreadsheet formulation for this example
would be very similar to the formulation for a transportation problem displayed in Fig.
8.4 except now all the supplies and demands would be 1 and the demand constraints would
be #1 instead of " 1.

However, large assignment problems can be solved much faster by using more spe-
cialized solution procedures, so we recommend using such a procedure instead of the gen-
eral simplex method for big problems.

Because the assignment problem is a special type of transportation problem, one con-
venient and relatively fast way to solve any particular assignment problem is to apply the
transportation simplex method described in Sec. 8.2. This approach requires converting
the cost table to a parameter table for the equivalent transportation problem, as shown in
Table 8.26a.
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TABLE 8.26 Parameter table for the assignment problem formulated as a
transportation problem, illustrated by the Job Shop Co. example

(a) General Case

Cost per Unit
Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n 1

2 c21 c22
… c2n 1Source

! … … … … !

m " n cn1 cn2
… cnn 1

Demand 1 1 … 1

(b) Job Shop Co. Example

Cost per Unit
Distributed

Destination (Location)

1 2 3 4 Supply

1 13 16 12 11 1
Source 2 15 M 13 20 1
(Machine) 3 5 7 10 6 1

4(D) 0 0 0 0 1

Demand 1 1 1 1



The Assignment Problem

• The assignment problem can be expressed in the network flow as follows:

similar their structures are. In fact, the assignment problem is just a special type of trans-
portation problem where the sources now are assignees and the destinations now are tasks
and where

Number of sources m ! number of destinations n,

Every supply si ! 1,

Every demand dj ! 1.

Now focus on the integer solutions property in the subsection on the transportation
problem model. Because si and dj are integers (! 1) now, this property implies that every
BF solution (including an optimal one) is an integer solution for an assignment problem.
The functional constraints of the assignment problem model prevent any variable from
being greater than 1, and the nonnegativity constraints prevent values less than 0. There-
fore, by deleting the binary restriction to enable us to solve an assignment problem as a
linear programming problem, the resulting BF solutions obtained (including the final op-
timal solution) automatically will satisfy the binary restriction anyway.

Just as the transportation problem has a network representation (see Fig. 8.3), the as-
signment problem can be depicted in a very similar way, as shown in Fig. 8.5. The first
column now lists the n assignees and the second column the n tasks. Each number in a
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c11 

c12 

c21 

c22 
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c n1
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c n2  
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[1] ["1]
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T1 

A2 T2 

Tn 

FIGURE 8.5
Network representation of
the assignment problem.



The Maximum Flow Problem 

• All flow in a network originates from 
node (called the source) and 
terminates in another node (called the 
destination). 


• All remaining nodes are the 
transshipment nodes. 


• Flow between two nodes only allowed 
in the direction of the arrow, and at 
most at the rate of the given capacity. 


• How can we maximize the flow from 
the source to the destination?

the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecology and
wildlife of the region, strict upper limits have been imposed on the number of outgoing
trips allowed per day in the outbound direction on each individual road. For each road,
the direction of travel for outgoing trips is indicated by an arrow in Fig. 9.6. The number
at the base of the arrow gives the upper limit on the number of outgoing trips allowed per
day. Given the limits, one feasible solution is to send 7 trams per day, with 5 using the
route O ! B ! E ! T, 1 using O ! B ! C ! E ! T, and 1 using O ! B ! C !
E ! D ! T. However, because this solution blocks the use of any routes starting with 
O ! C (because the E ! T and E ! D capacities are fully used), it is easy to find bet-
ter feasible solutions. Many combinations of routes (and the number of trips to assign to
each one) need to be considered to find the one(s) maximizing the number of trips made
per day. This kind of problem is called a maximum flow problem.

In general terms, the maximum flow problem can be described as follows.

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in the
Seervada Park problem are the park entrance at node O and the scenic wonder at node
T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.

4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem.

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
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FIGURE 9.6
The Seervada Park maximum
flow problem.

• Applications: 

• Maximize the flow through a company’s distribution 
network from its factories to its customers. 


• Maximize the flow through a company’s supply 
network from its vendors to its factories. 


• Maximize the flow of oil through a system of 
pipelines.


• Maximize the flow of water through a system of 
aqueducts.


• Maximize the flow of vehicles through a 
transportation network. 



The Maximum Flow Problem in Excel

Using Excel to Formulate and Solve Maximum Flow Problems

Most maximum flow problems that arise in practice are considerably larger, and occa-
sionally vastly larger, than the Seervada Park problem. Some problems have thousands of
nodes and arcs. The augmenting path algorithm just presented is far more efficient than
the general simplex method for solving such large problems. However, for problems of
modest size, a reasonable and convenient alternative is to use Excel and its Solver based
on the general simplex method.

Figure 9.11 shows a spreadsheet formulation for the Seervada Park maximum flow
problem. The format is similar to that for the Seervada Park shortest-path problem dis-
played in Fig. 9.4. The arcs are listed in columns B and C, and the corresponding arc ca-
pacities are given in column F. Since the decision variables are the flows through the re-
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FIGURE 9.11
A spreadsheet formulation for the Seervada Park maximum flow problem, where the
changing cells (D4:D15) show the optimal solution obtained by the Excel Solver and
the target cell (D17) gives the resulting maximum flow through the network.



The Minimum-Cost Flow Problem

• At least one of the nodes is a supply node.


• At least one of the other nodes is a demand 
node.


• All the remaining nodes are transshipment 
nodes.


• Flow through an arc is allowed only in the 
direction indicated by the arrowhead, where 


• The network has enough arcs with sufficient 
capacity to enable all the flow generated at the 
supply nodes to reach all the demand nodes. 


• The cost of the flow through each arc is 
proportional to the amount of that flow, where 
the cost per unit flow is known. 


• The objective is to minimize the total cost of 
sending the available supply through the  
network to satisfy the given demand. 

its sources (factories, etc.) to intermediate storage facilities (as needed) and then on to
the customers.

For example, consider the distribution network for the International Paper Company
(as described in the March–April 1988 issue of Interfaces). This company is the world’s
largest manufacturer of pulp, paper, and paper products, as well as a major producer of
lumber and plywood. It also either owns or has rights over about 20 million acres of wood-
lands. The supply nodes in its distribution network are these woodlands in their various
locations. However, before the company’s goods can eventually reach the demand nodes
(the customers), the wood must pass through a long sequence of transshipment nodes. A
typical path through the distribution network is

Woodlands ! woodyards ! sawmills
! paper mills ! converting plants
! warehouses ! customers.

Another example of a complicated distribution network is the one for the Citgo Pe-
troleum Corporation described in Sec. 3.5. Applying a minimum cost flow problem for-
mulation to improve the operation of this distribution network saved Citgo at least $16.5
million annually.

For some applications of minimum cost flow problems, all the transshipment nodes
are processing facilities rather than intermediate storage facilities. This is the case for
solid waste management, as indicated in the second row of Table 9.3. Here, the flow of
materials through the network begins at the sources of the solid waste, then goes to the
facilities for processing these waste materials into a form suitable for landfill, and then
sends them on to the various landfill locations. However, the objective still is to deter-
mine the flow plan that minimizes the total cost, where the cost now is for both ship-
ping and processing.

In other applications, the demand nodes might be processing facilities. For example,
in the third row of Table 9.3, the objective is to find the minimum cost plan for obtain-
ing supplies from various possible vendors, storing these goods in warehouses (as needed),
and then shipping the supplies to the company’s processing facilities (factories, etc.). Since
the total amount that could be supplied by all the vendors is more than the company needs,
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TABLE 9.3 Typical kinds of applications of minimum cost flow problems

Kind of Application Supply Nodes Transshipment Nodes Demand Nodes

Operation of a Sources of goods Intermediate storage Customers
distribution network facilities

Solid waste Sources of solid Processing facilities Landfill locations
management waste

Operation of a supply Vendors Intermediate warehouses Processing
network facilities

Coordinating product Plants Production of a specific Market for a
mixes at plants product specific product

Cash flow Sources of cash at Short-term investment Needs for cash at
management a specific time options a specific time



The Minimum-Cost Flow Problem

• The minimum-cost flow problem can be formulated as follows: 


• Define the decision variables: 


• Write down the objective and constraints:

the network includes a dummy demand node that receives (at zero cost) all the unused
supply capacity at the vendors.

The July–August 1987 issue of Interfaces describes how, even back then, microcom-
puters were being used by Marshalls, Inc. (an off-price retail chain) to deal with a mini-
mum cost flow problem this way. In this application, Marshalls was optimizing the flow
of freight from vendors to processing centers and then on to retail stores. Some of their
networks had over 20,000 arcs.

The next kind of application in Table 9.3 (coordinating product mixes at plants) illus-
trates that arcs can represent something other than a shipping lane for a physical flow of
materials. This application involves a company with several plants (the supply nodes) that
can produce the same products but at different costs. Each arc from a supply node repre-
sents the production of one of the possible products at that plant, where this arc leads to
the transshipment node that corresponds to this product. Thus, this transshipment node has
an arc coming in from each plant capable of producing this product, and then the arcs lead-
ing out of this node go to the respective customers (the demand nodes) for this product.
The objective is to determine how to divide each plant’s production capacity among the
products so as to minimize the total cost of meeting the demand for the various products.

The last application in Table 9.3 (cash flow management) illustrates that different nodes
can represent some event that occurs at different times. In this case, each supply node rep-
resents a specific time (or time period) when some cash will become available to the com-
pany (through maturing accounts, notes receivable, sales of securities, borrowing, etc.). The
supply at each of these nodes is the amount of cash that will become available then. Sim-
ilarly, each demand node represents a specific time (or time period) when the company will
need to draw on its cash reserves. The demand at each such node is the amount of cash
that will be needed then. The objective is to maximize the company’s income from in-
vesting the cash between each time it becomes available and when it will be used. There-
fore, each transshipment node represents the choice of a specific short-term investment op-
tion (e.g., purchasing a certificate of deposit from a bank) over a specific time interval. The
resulting network will have a succession of flows representing a schedule for cash becoming
available, being invested, and then being used after the maturing of the investment.

Formulation of the Model

Consider a directed and connected network where the n nodes include at least one sup-
ply node and at least one demand node. The decision variables are

xij ! flow through arc i ! j,

and the given information includes

cij ! cost per unit flow through arc i ! j,
uij ! arc capacity for arc i ! j,
bi ! net flow generated at node i.

The value of bi depends on the nature of node i, where

bi " 0 if node i is a supply node,
bi # 0 if node i is a demand node,
bi ! 0 if node i is a transshipment node.
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and the given information includes

cij ! cost per unit flow through arc i ! j,
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bi ! net flow generated at node i.
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The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand.

By using the convention that summations are taken only over existing arcs, the lin-
ear programming formulation of this problem is

Minimize Z ! !
n

i!1
!
n

j!1
cijxij,

subject to

!
n

j!1
xij " !

n

j!1
xji ! bi, for each node i,

and

0 # xij # uij, for each arc i ! j.

The first summation in the node constraints represents the total flow out of node i, whereas
the second summation represents the total flow into node i, so the difference is the net
flow generated at this node.

In some applications, it is necessary to have a lower bound Lij $ 0 for the flow through
each arc i ! j. When this occurs, use a translation of variables x%ij ! xij " Lij, with x%ij &
Lij substituted for xij throughout the model, to convert the model back to the above for-
mat with nonnegativity constraints.

It is not guaranteed that the problem actually will possess feasible solutions, depending
partially upon which arcs are present in the network and their arc capacities. However,
for a reasonably designed network, the main condition needed is the following.

Feasible solutions property: A necessary condition for a minimum cost flow
problem to have any feasible solutions is that

!
n

i!1
bi ! 0.

That is, the total flow being generated at the supply nodes equals the total flow
being absorbed at the demand nodes.

If the values of bi provided for some application violate this condition, the usual interpreta-
tion is that either the supplies or the demands (whichever are in excess) actually represent up-
per bounds rather than exact amounts. When this situation arose for the transportation prob-
lem in Sec. 8.1, either a dummy destination was added to receive the excess supply or a
dummy source was added to send the excess demand. The analogous step now is that either
a dummy demand node should be added to absorb the excess supply (with cij ! 0 arcs added
from every supply node to this node) or a dummy supply node should be added to generate
the flow for the excess demand (with cij ! 0 arcs added from this node to every demand node).

For many applications, bi and uij will have integer values, and implementation will
require that the flow quantities xij also be integer. Fortunately, just as for the transporta-
tion problem, this outcome is guaranteed without explicitly imposing integer constraints
on the variables because of the following property.
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The Minimum-Cost Problem as a Network Flow

Integer solutions property: For minimum cost flow problems where every bi

and uij have integer values, all the basic variables in every basic feasible (BF)
solution (including an optimal one) also have integer values.

An Example

An example of a minimum cost flow problem is shown in Fig. 9.12. This network actu-
ally is the distribution network for the Distribution Unlimited Co. problem presented in
Sec. 3.4 (see Fig. 3.13). The quantities given in Fig. 3.13 provide the values of the bi, cij,
and uij shown here. The bi values in Fig. 9.12 are shown in square brackets by the nodes,
so the supply nodes (bi ! 0) are A and B (the company’s two factories), the demand nodes
(bi " 0) are D and E (two warehouses), and the one transshipment node (bi # 0) is C (a
distribution center). The cij values are shown next to the arcs. In this example, all but two
of the arcs have arc capacities exceeding the total flow generated (90), so uij # ! for all
practical purposes. The two exceptions are arc A ! B, where uAB # 10, and arc C ! E,
which has uCE # 80.

The linear programming model for this example is

Minimize Z # 2xAB $ 4xAC $ 9xAD $ 3xBC $ xCE $ 3xDE $ 2xED,

subject to

xAB $ xAC $ xAD # 50
%xAB $ xBC # 40

% xAC % xBC $ xCE # 0
% xAD $ xDE % xED # %30

% xCE % xDE $ xED # %60

and

xAB & 10, xCE & 80, all xij ' 0.
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FIGURE 9.12
The Distribution Unlimited
Co. problem formulated as a
minimum cost flow problem.



The Minimum-Cost Problem in Excel

Now note the pattern of coefficients for each variable in the set of five node constraints
(the equality constraints). Each variable has exactly two nonzero coefficients, where one
is !1 and the other is "1. This pattern recurs in every minimum cost flow problem, and
it is this special structure that leads to the integer solutions property.

Another implication of this special structure is that (any) one of the node constraints
is redundant. The reason is that summing all these constraint equations yields nothing but
zeros on both sides (assuming feasible solutions exist, so the bi values sum to zero), so
the negative of any one of these equations equals the sum of the rest of the equations.
With just n " 1 nonredundant node constraints, these equations provide just n " 1 basic
variables for a BF solution. In the next section, you will see that the network simplex
method treats the xij # uij constraints as mirror images of the nonnegativity constraints,
so the total number of basic variables is n " 1. This leads to a direct correspondence be-
tween the n " 1 arcs of a spanning tree and the n " 1 basic variables—but more about
that story later.

Using Excel to Formulate and Solve Minimum Cost Flow Problems

Excel provides a convenient way of formulating and solving small minimum cost flow
problems like this one, as well as somewhat larger problems. Figure 9.13 shows how this
can be done. The format is almost the same as displayed in Fig. 9.11 for a maximum flow
problem. One difference is that the unit costs (cij) now need to be included (in column
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FIGURE 9.13
A spreadsheet formulation for
the Distribution Unlimited
Co. minimum cost flow
problem, where the
changing cells (D4:D10)
show the optimal solution
obtained by the Excel Solver
and the target cell (D12)
gives the resulting total cost
of the flow of shipments
through the network.


